Part Number Hot Search : 
C1202 35GQ150 LAN91C94 AD780BNZ 2SK19 UL1262 M620FP3 M155N
Product Description
Full Text Search
 

To Download APT50GT120B2RDQ2G Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  symbol parameter ratings unit v ces collector-emitter voltage 1200 volts v ge gate-emitter voltage 30 i c1 continuous collector current @ t c = 25c 94 amps i c2 continuous collector current @ t c = 100c 50 i cm pulsed collector current 1 150 ssoa switching safe operating area @ t j = 150c 150a @ 1200v p d total power dissipation 625 watts t j , t stg operating and storage junction temperature range -55 to 150 c t l max. lead temp. for soldering: 0.063? from case for 10 sec. 300 maximum ratings all ratings: t c = 25c unless otherwise speci ed. symbol characteristic / test conditions min typ max unit v (br)ces collector-emitter breakdown voltage (v ge = 0v, i c = 3ma) 1200 - - volts v ge(th) gate threshold voltage (v ce = v ge , i c = 2ma, t j = 25c) 4.5 5.5 6.5 v ce(on) collector emitter on voltage (v ge = 15v, i c = 50a, t j = 25c) 2.7 3.2 3.7 collector emitter on voltage (v ge = 15v, i c = 50a, t j = 125c) - 4.0 - i ces collector cut-off current (v ce = 1200v, v ge = 0v, t j = 25c) 2 - - 300 a collector cut-off current (v ce = 1200v, v ge = 0v, t j = 125c) 2 - - tbd i ges gate-emitter leakage current (v ge = 20v) - - 300 na static electrical characteristics caution: these devices are sensitive to electrostatic discharge. proper handling procedures should be followed . microsemi website - http://www.microsemi.com 052-6289 rev a 9-2007 APT50GT120B2RDQ2G 1200v, 50a, v ce(on) = 3.2v typical thunderbolt igbt ? the thunderbolt igbt ? is a new generation of high voltage power igbts. using non-punch-through technology, the thunderbolt igbt ? offers superior rugged- ness and ultrafast switching speed. features ? low forward voltage drop ? low tail current ? rohs compliant ? rbsoa and scsoa rated ? high frequency switching to 50khz ? ultra low leakage current unless stated otherwise, microsemi discrete igbts contain a single igbt die. this device is made with two parallel igbt die. it is intended for switch-mode operation. it is not suitable for linear mode operation.
052-6289 rev a 9-2007 dynamic characteristic apt50gt120b2rdq2r symbol characteristic test conditions min typ max unit c ies input capacitance v ge = 0v, v ce = 25v f = 1mhz - 3300 - pf c oes output capacitance - 500 - c res reverse transfer capacitance - 220 - v gep gate-to-emitter plateau voltage gate charge v ge = 15v v ce = 600v i c = 50a - 10.5 - v q g total gate charge - 340 - nc q ge gate-emitter charge -40 - q gc gate-collector charge - 210 - ssoa switching safe operating area t j = 150c, r g = 1.0 7 , v ge = 15v, l = 100 h, v ce = 1200v 150 a t d(on) turn-on delay time inductive switching (25c) v cc = 800v v ge = 15v i c = 50a r g = 4.7 t j = +25c -24 - ns t r current rise time -53 - t d(off) turn-off delay time - 230 - t f current fall time -26 - e on1 turn-on switching energy 4 - tbd - j e on2 turn-on switching energy 5 - 5330 - e off turn-off switching energy 6 - 2033 - t d(on) turn-on delay time inductive switching (125c) v cc = 800v v ge = 15v i c = 50a r g = 4.7 t j = 125c -24 - ns t r current rise time -53 - t d(off) turn-off delay time - 255 - t f current fall time -48 - e on1 turn-on switching energy 4 - tbd - j e on2 turn-on switching energy 5 - 5670 - e off turn-off switching energy 6 - 2850 - symbol characteristic / test conditions min typ max unit r jc junction to case (igbt) 0.20 c/w r jc junction to case (diode) 0.80 w t package weight 6.2 g 1 repetitive rating: pulse width limited by maximum junction temperature. 2 for combi devices, i ces includes both igbt and fred leakages. 3 see mil-std-750 method 3471. 4 e on1 is the clamped inductive turn-on energy of the igbt only, without the effect of a commutating diode reverse recovery current adding to z a the igbt turn-on loss. tested in inductive switching test circuit shown in gure 21, but with a silicon carbide diode. 5 e on2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the igbt turn-on switchin g loss. (see figures 21, 22.) 6 e off is the clamped inductive turn-off energy measured in accordance with jedec standard jesd24-1. (see figures 21, 23.) 7 r g is external gate resistance not including gate driver impedance. thermal and mechanical characteristics microsemi reserves the right to change, without notice, the speci cations and information contained herein.
0 20 40 60 80 100 25 50 75 100 125 150 0 1 2 3 4 5 6 7 25 50 75 100 125 150 0 2 4 6 8 10 12 14 16 0 50 100 150 200 250 300 350 0 1 2 3 4 5 6 11 12 13 14 15 16 10 9 8 0 25 50 75 100 125 150 10 12 14 8 6 4 2 0 0 25 50 75 100 125 150 0 1015202530 5 0 25 50 75 100 125 150 0 1 2 3 4 5 6 7 8 052-6289 rev a 9-2007 250 s pulse test<0.5 % duty cycle t j = 25c. 250 s pulse test <0.5 % duty cycle v ge = 15v. 250 s pulse test <0.5 % duty cycle i c = 25a i c = 50a i c = 100a i c = 25a i c = 50a i c = 100a 13v 8v 11v 7v 6v 15v i c = 50a t j = 25c v ce = 960v v ce = 600v v ce = 240v t j = 25c t j = -55c typical performance curves APT50GT120B2RDQ2G v ge = 15v t j = 55c t j = 150c v ce , collector-to-emitter voltage (v) figure 1, output characteristics (t j = 25c) i c , collector current (a) t j = 25c t j = 125c v ce , collector-to-emitter voltage (v) figure 2, output characteristics (t j = 25c) i c , collector current (a) 10v 9v t j = 125c v ce , gate-to-emitter voltage (v) figure 3, transfer characteristics i c , collector current (a) v ge , gate-to-emitter voltage (v) figure 5, on state voltage vs gate-to-emitter voltage v ce , collector-to-emitter voltage (v) gate charge (nc) figure 4, gate charge v ge , gate-to-emitter voltage (v) t j , junction temperature (c) figure 6, on state voltage vs junction temperature v ce , collector-to-emitter voltage (v) t c , case temperature (c) figure 8, dc collector current vs case temperature i c , dc collector current (a) 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 -.50 -.25 0 25 50 75 100 125 150 t j , junction temperature figure 7, threshold voltage vs junction temperature v gs(th) , threshold voltage (normalized)
0 5,000 10,000 15,000 20,000 0 25 50 75 100 125 0 10,000 20,000 30,000 40,000 50,000 60,000 0 10 20 30 40 50 0 1,000 2,000 3,000 4,000 5,000 6,000 10 30 50 70 90 110 0 5,000 10,000 15,000 20,000 10 30 50 70 90 110 0 10 20 30 40 50 60 10 30 50 70 90 110 0 20 40 60 80 100 120 140 160 10 30 50 70 90 110 0 50 100 150 200 250 300 0 20 40 60 80 100 120 0 5 10 15 20 25 30 35 0 20 40 60 80 100 120 052-6289 rev a 9-2007 v ge =15v,t j =125c v ge =15v,t j =25c v ce = 800v r g = 1.0 l = 100 h v ce = 800v v ge = +15v r g = 1.0 v ce = 800v t j = 25c , or 125c r g = 1.0 l = 100 h v ge = 15v v ce = 800v v ge = +15v r g = 1.0 v ce = 800v v ge = +15v r g = 1.0 r g = 1.0 , l = 100 h, v ce = 800v t j = 125c t j = 25c t j = 125c t j = 25c r g = 1.0 , l = 100 h, v ce = 800v t j = 25 or 125c,v ge = 15v t j = 125c, v ge = 15v t j = 25c, v ge = 15v e on2, 100a e off, 100a e on2, 50a e off, 50a e on2, 25a e off, 25a v ce = 800v v ge = +15v t j = 125c e on2, 100a e off, 100a e on2, 50a e off, 50a e on2, 25a e off, 25a typical performance curves APT50GT120B2RDQ2G i ce , collector-to-emitter current (a) figure 9, turn-on delay time vs collector current t d(on) , turn-on delay time (ns) i ce , collector-to-emitter current (a) figure 10, turn-off delay time vs collector current t d(off) , turn-off delay time (ns) i ce , collector-to-emitter current (a) figure 11, current rise time vs collector current t r , rise time (ns) i ce , collector-to-emitter current (a) figure 12, current fall time vs collector current t r , fall time (ns) i ce , collector-to-emitter current (a) figure 13, turn-on energy loss vs collector current e on2 , turn on energy loss ( j) i ce , collector-to-emitter current (a) figure 14, turn-off energy loss vs collector current e off , turn off energy loss ( j) r g , gate resistance (ohms) figure 15, switching energy losses vs gate resistance switching energy losses ( j) t j , junction temperature (c) figure 16, switching energy losses vs junction temperature switching energy losses ( j)
0 20 40 60 80 100 120 10 20 30 40 50 60 70 80 90 100 0 0.05 0. 1 0.15 0. 2 0.25 10 -5 10 -4 10 -3 10 -2 10 -1 1.0 10 100 1000 5000 0 100 200 300 400 500 600 typical performance curves APT50GT120B2RDQ2G 052-6289 rev a 9-2007 z jc , thermal impedance (c/w) 0.3 d = 0.9 0.7 single pulse rectangular pulse duration (seconds) figure 19a, maximum effective transient thermal impedance, junction-to-case vs pulse duration figure 19b, transient thermal impedance model f max , operating frequency (khz) i c , collector current (a) figure 20, operating frequency vs collector current t j = 125 c t c = 75 c d = 50 % v ce = 800v r g = 1.0 0.5 0.1 0.05 f max = min (f max , f max2 ) 0.05 f max1 = t d(on) + t r + t d(off) + t f p diss - p cond e on2 + e off f max2 = p diss = t j - t c r jc c oes c res c ies peak t j = p dm x z jc + t c duty factor d = t 1 / t 2 t 2 t 1 p dm note: 75c 100c 0.0487 0.151 0.00909 0.389 dissipated power (watts) t j (c) t c (c) z ext are the external thermal impedances: case to sink, sink to ambient, etc. set to zero when modeling only the case to junction. z ext v ce , collector-to-emitter voltage (volts) figure 17, capacitance vs collector-to-emitter voltage c, capacitance (pf) 0 20 40 60 80 100 120 140 0 200 400 600 800 1000 1200 1400 160 v ce , collector-to-emitter voltage figure 18, minimum switching safe operating area i c , collector current (a)
052-6289 rev a 9-2007 APT50GT120B2RDQ2G i c a d.u.t. v ce v cc apt30dq120 figure 21, inductive switching test circuit figure 23, turn-off switching waveforms and de nitions t j = 125c collector voltage collector current gate voltage switching energy 0 90% t d(off) 10% t f 90% figure 22, turn-on switching waveforms and de nitions t j = 125c collector current collector voltage gate voltage 5% 10% t d(on) 90% 10% t r 5% switching energy
typical performance curves APT50GT120B2RDQ2G 052-6289 rev a 9-2007 static electrical characteristics dynamic characteristics maximum ratings all ratings: t c = 25c unless otherwise speci? ed. ultrafast soft recovery anti-parallel diode z jc , thermal impedance (c/w) 10 -5 10 -4 10 -3 10 -2 10 -1 1.0 rectangular pulse duration (seconds) figure 24a. maximum effective transient thermal impedance, junction-to-case vs. pulse duration 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20` 0.10 0 0.5 single pulse 0.1 0.3 0.7 0.05 figure 24b, transient thermal impedance model peak t j = p dm x z jc + t c duty factor d = t 1 / t 2 t 2 t 1 p dm note: d = 0.9 0.570 0.231 0.00241 0.210 dissipated power (watts) t j (c) t c (c) z ext are the external thermal impedances: case to sink, sink to ambient, etc. set to zero when modeling only the case to junction. z ext symbol characteristic / test conditions APT50GT120B2RDQ2G unit i f(av) maximum average forward current (t c = 103c, duty cycle = 0.5) 30 amps i f(rms) rms forward current (square wave, 50% duty) 43 i fsm non-repetitive forward surge current (t j = 45c, 8.3 ms) 210 symbol characteristic / test conditions min type max unit v f forward voltage i f = 30a 2.8 3.3 volts i f = 60a 3.4 i f = 30a, t j = 125c 2.1 symbol characteristic test conditions min typ max unit t rr reverse recovery time i f = 1a, di f /dt = -100a/ s , v r = 30v, t j = 25 c - 26 - ns t rr reverse recovery time i f = 30a, di f /dt = -200a/ s v r = 667v, t c = 25 c - 320 - q rr reverse recovery charge - 545 - nc i rrm maximum reverse recovery current - 4 - amps t rr reverse recovery time i f = 30a, di f /dt = -200a/ s v r = 667v, t c = 125 c - 435 -ns q rr reverse recovery charge - 2100 - nc i rrm maximum reverse recovery current - 9 - amps t rr reverse recovery time i f = 30a, di f /dt = -1000a/ s v r = 800v, t c = 125 c - 180 - ns q rr reverse recovery charge - 2975 -nc i rrm maximum reverse recovery current - 28 - amps
052-6289 rev a 9-2007 APT50GT120B2RDQ2G t j = 125 c v r = 800v 15a 30a 60a t rr q rr q rr t rr i rrm 600 500 400 300 200 100 0 35 30 25 20 15 10 5 0 duty cycle = 0.5 t j = 175 c 0 25 50 75 100 125 150 25 50 75 100 125 150 175 1 10 100 200 50 45 40 35 30 25 20 15 10 5 0 1.2 1.0 0.8 0.6 0.4 0.2 0.0 200 180 160 140 120 100 80 60 40 20 0 c j , junction capacitance k f , dynamic parameters (pf) (normalized to 1000a/ s) i f(av) (a) t j , junction temperature ( c) case temperature ( c) figure 29. dynamic parameters vs. junction temperature figure 30. maximum average forward current vs. casetempe rature v r , reverse voltage (v) figure 31. junction capacitance vs. reverse voltage 200 180 160 140 120 100 80 60 40 20 0 5000 4000 3000 2000 1000 0 v f , anode-to-cathode voltage (v) -di f /dt, current rate of change(a/ s) figure 25. forward current vs. forward voltage figure 26. reverse recovery time vs. current rate of ch ange -di f /dt, current rate of change (a/ s) -di f /dt, current rate of change (a/ s) figure 27. reverse recovery charge vs. current rate of change figure 28. reverse recovery current vs. current rate of c hange 0 1 2 3 4 5 0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 q rr , reverse recovery charge i f , forward current (nc) (a) i rrm , reverse recovery current t rr , reverse recovery time (a) (ns) t j = 125 c v r = 800v 60a 15a 30a t j = 125 c v r = 800v 60a 30a 15a t j = 175 c t j = -55 c t j = 25 c t j = 125 c
microsemi?s products are covered by one or more of u.s. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,5 03,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743 and foreign patents. us and foreign patents pending. all rights res erved. APT50GT120B2RDQ2G 052-6289 rev a 9-2007 dimensions in millimeters and (inches) 4.69 (.185) 5.31 (.209) 1.49 (.059) 2.49 (.098) 2.21 (.087) 2.59 (.102) 0.40 (.016) 0.79 (.031) gate 15.49 (.610) 16.26 (.640) 5.38 (.212) 6.20 (.244) 4.50 (.177) max. 19.81 (.780) 20.32 (.800) 20.80 (.819) 21.46 (.845) 1.65 (.065) 2.13 (.084) 1.01 (.040) 1.40 (.055) 5.45 (.215) bsc 2.87 (.113) 3.12 (.123) 2-plcs. t-max ? package outline 4 3 1 2 5 5 zero 1 2 3 4 di f /dt - rate of diode current change through zero crossing. i f - forward conduction current i rrm - maximum reverse recovery current. t rr - reverse r ecovery time, measured from zero crossing where diode q rr - area under the curve defined by i rrm and t rr . current goes from positive to negative, to the point at which the straight line through i rrm and 0.25 i rrm passes through zero. figure 32. diode test circuit figure 33, diode reverse recovery waveform and definitions 0.25 i rrm pearson 2878 current transformer di f /dt adjust 30 h d.u.t. +18v 0v v r t rr / q rr waveform apt10078bll collector (cathode) emitter (anode) collector (cathode)


▲Up To Search▲   

 
Price & Availability of APT50GT120B2RDQ2G

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X